The p-Block Elements (Group 15, 16, 17 & 18)

- 1. Find the number of sigma bonds in P_4O_{10} .
- **2.** How many bonding electron pairs are there in white phosphorus ?
- 3. Find the number of P-O-P bonds in cyclic metaphosphoric acid
- Calculate the total number of bond pairs and lone pairs of electrons present in OF₂ molecule.
- 5. How many forms of SO₃ exists
- **6.** What is the number of S–S bonds in sulphur trioxide trimer (S₂O₂)?
- 7. What is the number of P–O–P bonds in cyclic metaphosphoric acid?
- 8. Find the number of P-O-P bonds in P_4O_{10}
- 9. 25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4N acetic acid. In the titration of the liberated iodine, 48 mL of 0.25 N Na₂S₂O₃ was used to reach the end point. Calculate the molarity of the household bleach solution.
- 10. What is the value of n in the molecular formula Be_nAl₂Si₆O₁₈?
- 11. Reaction of Br₂ with Na₂CO₃in aqueous solution gives sodium bromide and sodium bromate with evolution of CO₂ gas. Find the number of sodium bromide molecules involved in the balanced chemical equation.
- 12. Among the following, find the number of compounds that can react with PCl₅ to give POCl₃

- 13. What is the sum of number of sigma (σ) and pi (π) bonds present in sulphuric acid molecule?
- **14.** H₃PO₂ is the molecular formula of an acid of phosphorus. What is its basicity?
- How many hygroscopic compounds are formed when Cl₂ reacts with hot aqueous NaOH.

SOLUTIONS

8. (6)

There are 6 P-O-P bond in P₄O₁₀.

(3) Number of millimole of hypo = 0.25×48

 $= 2 \times \text{millimole of Cl}_2$

$$\therefore \text{ Number of millimole of Cl}_2 = \frac{0.25 \times 48}{2} = 6$$

millimole of Cl₂ = millimole of CaOCl₂ Molarity of bleaching solution

$$= \frac{\text{Millimoles of CaOCl}_2}{\text{Vol.(in mL) of CaOCl}_2} = \frac{6}{25} = 0.24$$

10. (3) Total cationic charge = Total anionic charge 2n+6+24=36 n=3

11. (5)
$$3Br_2 + 3Na_2CO_3$$

5NaBr + NaBrO₃ + 3CO₂

12. (4)
$$PCl_5 + SO_2 \longrightarrow POCl_3 + SOCl_2$$

 $PCl_5 + H_2O \longrightarrow POCl_3 + 2HCl$
 $PCl_5 + H_2SO_4 \longrightarrow POCl_3 + SO_2Cl_2 + 2HCl$
 $6PCl_5 + P_4O_{10} \longrightarrow 10POCl_3$

13. (8)
$$H-O-S-O-H$$
; $6\sigma \& 2\pi$

14. (1) H_3PO_2 is named as hypophosphorous acid. It is monobasic as it contains only one P – OH bond, its basicity is one.

15. (2) $3Cl_2 + 4NaOH \longrightarrow 5NaCl + NaClO_3 + 3H_2O$ NaCl and NaClO₃, both are hygrocopic in nature.

(16) $0 = P \qquad 0 \qquad P = 0$ $0 = P \qquad P \qquad 0$ $0 = P \qquad P \qquad 0$

P₄ (White phosporus)

2. (3) ;p

: Each P-atom forms 3 bonds. Thus it has 3 bond pairs of electrons.

 (3) In cyclic metaphosporic acid number of P-O-P bonds is three.

4. (10) $: \ddot{F} - \ddot{O} - \ddot{F} : \text{Number of bond pairs} = 2, \text{Number of lone pairs} = 8.$

5. (3) SO_3 exists in 3 solid allotropic forms.

6. (0) S_3O_9 (also called α - sulphur trioxide) is an ice like solid with the following molecular structure.

There is no S–S bond is S_3O_9

7. (3) O I I O

No. of P-O-P bonds = 3. It is the most stable among all the cyclic metaphosphates.